

Advanced Topics on Privacy Enhancing Technologies

CS-523

Privacy-preserving Data Publishing I

Exercise 1

Are the following statements TRUE or FALSE:

- (a) The columns of a synthetic dataset can be considered quasi-identifiers.
- (b) Enforcing l -diversity on a k -anonymous dataset increases the number of k -anonymous equivalent classes.
- (c) t -closeness is not a sufficient condition for anonymity.
- (d) Anonymization always impacts utility.

Exercise 2

You are working at Quitter, a social network for people that want to change their job. As those people will soon go to the job market, you think you could monetize the information you have by selling it to advertisers and job brokers. Of course, you are aware that there is regulation that constrains what you can share, and also that if you share too much you may lose the trust of your users and they may leave your social network. The information you want to share is the social graph of Quitter users, where nodes represent users and edges relationships between users.

Are the following good anonymization strategies for this scenario? Justify your answer (*Hint: Think about the auxiliary information a potential adversary could use, and also about the impact on utility of the shared information for others*):

1. Publish all nodes and edges, remove user names, but leave detailed profile information such as previous employment history, date of birth, skills, attached to each node.

2. Publish all nodes and edges, remove any user and profile information from the nodes.
3. Publish all nodes but only a subset of edges, remove any user or profile information from the nodes.

Exercise 3

A famous restaurant has released an anonymized version of the guests seated at their most popular table for dinner over the course of one week:

<i>Monday</i>	customer1, customer5, customer7, customer14
<i>Tuesday</i>	customer10, customer5
<i>Wednesday</i>	customer2, customer6, customer9
<i>Thursday</i>	customer1, customer5, customer4
<i>Friday</i>	customer10, customer11, customer12, customer13, customer8
<i>Saturday</i>	customer10, customer3

- (a) Ally has gone to this restaurant once during this week for a couples dinner with her partner and two friends where they were seated at the most popular table. Looking at this anonymized data, what can she learn about her partner and her friends beyond what she might have already known before?
- (b) Can k-anonymity or l-diversity help the restaurant prevent Ally's inferences?
- (c) Can publishing a synthetic version of these data, where the pattern learned by the generative model would be the distribution of eaters over the week, help the restaurant prevent Ally's inferences?

Exercise 4

The two tables shown below have been released by two hospitals. You know that Bobby was a patient in both hospitals. What can you learn about Bobby, who just shared a social media post about celebrating his 25th birthday?

	Non-Sensitive			Sensitive	
	Zip code	Age	Nationality	Condition	
1	130**	<30	*	AIDS	
2	130**	<30	*	Heart Disease	
3	130**	<30	*	Viral Infection	
4	130**	<30	*	Viral Infection	
5	130**	≥40	*	Cancer	
6	130**	≥40	*	Heart Disease	
7	130**	≥40	*	Viral Infection	
8	130**	≥40	*	Viral Infection	
9	130**	3*	*	Cancer	
10	130**	3*	*	Cancer	
11	130**	3*	*	Cancer	
12	130**	3*	*	Cancer	

	Non-Sensitive			Sensitive	
	Zip code	Age	Nationality	Condition	
1	130**	<35	*	AIDS	
2	130**	<35	*	Tuberculosis	
3	130**	<35	*	Flu	
4	130**	<35	*	Tuberculosis	
5	130**	<35	*	Cancer	
6	130**	<35	*	Cancer	
7	130**	≥35	*	Cancer	
8	130**	≥35	*	Cancer	
9	130**	≥35	*	Cancer	
10	130**	≥35	*	Tuberculosis	
11	130**	≥35	*	Viral Infection	
12	130**	≥35	*	Viral Infection	

Hospital A (4-anonymous)

Hospital B (6-anonymous)